Loading Posts...

This Is How Know There Are Two Trillion Galaxies In The Universe

When you gaze up at the night sky, through the veil of stars and the plane of the Milky Way close by, you can’t help but feel small before the grand abyss of the Universe that lies beyond. Even though nearly all of them are invisible to our eyes, our observable Universe, extending tens of billions of light years in all directions, contains a fantastically large number of galaxies within it.

And very small, low-mass galaxies, like Segue 3 in our own backyard, would be far too faint and small to resolve. So we could push past our technological limits from that mid-1990s image, but even so, we could never get all the galaxies. The best attempt we ever made was the Hubble eXtreme Deep Field (XDF), which represented a composite image of ultraviolet, optical, and infrared data.

By observing just a tiny patch of sky so small it would take 32 million of them to cover all the possible directions we could look, we accumulated a total of 23 days worth of data. Stacking everything together into a single image revealed something never-before seen: a total of approximately 5,500 galaxies. This represented the highest density of galaxies ever observed through a narrow, pencil-like beam in space.

Only approximately 1000 stars are present in the entirety of dwarf galaxies Segue 1 and Segue 3, which has a gravitational mass of 600,000 Suns. The stars making up the dwarf satellite Segue 1 are circled here. If new research is correct, then dark matter will obey a different distribution depending on how star formation, over the galaxy’s history, has heated it. MARLA GEHA AND KECK OBSERVATORIES

You might think, therefore, that we could estimate the number of galaxies in the Universe by taking the number we observed in this image and multiplying it by the number of such images it would take to cover the entire sky. In fact, you can get a spectacular number by doing so: 5500 multiplied by 32 million comes out to an incredible 176 billion galaxies.

But that’s not an estimate; that’s a lower limit. Nowhere in that estimate do the too-faint, too-small, or too-close-to-another galaxies show up. Nowhere do the galaxies obscured by the neutral gas and dust appear, nor do the galaxies located beyond the redshift capabilities of Hubble. Yet, just as those galaxies exist nearby, they ought to exist in the young, distant Universe as well.

Various long-exposure campaigns, like the Hubble eXtreme Deep Field (XDF) shown here, have revealed thousands of galaxies in a volume of the Universe that represents a fraction of a millionth of the sky. But even with all the power of Hubble, and all the magnification of gravitational lensing, there are still galaxies out there beyond what we are capable of seeing. NASA, ESA, H. TEPLITZ AND M. RAFELSKI (IPAC/CALTECH), A. KOEKEMOER (STSCI), R. WINDHORST (ARIZONA STATE UNIVERSITY), AND Z. LEVAY (STSCI)

The big ingredient that we need to come up with a true estimate, then, is how structure accurately forms in the Universe. If we can run a simulation that starts with:

  • the ingredients that make up the Universe,
  • the right initial conditions that reflect our reality,
  • and the correct laws of physics that describe nature,

We can simulate how such a Universe evolves. We can simulate when stars form, when gravity pulls matter into large enough collections to create galaxies, and to compare what our simulations predict with the Universe, both near-and-far, that we actually observe. Perhaps surprisingly, there are more galaxies the early Universe than there are today. But unsurprisingly, they’re smaller, less massive, and are destined to merge together into the old spirals and ellipticals that dominate the Universe we inhabit at present.

Galaxies comparable to the present-day Milky Way are numerous, but younger galaxies that are Milky Way-like are inherently smaller, bluer, more chaotic, and richer in gas in general than the galaxies we see today. For the first galaxies of all, this ought to be taken to the extreme, and remains valid as far back as we’ve ever seen. NASA AND ESA

The simulations that match best with reality contain dark matter, dark energy, and small, seed fluctuations that will grow, over time, into stars, galaxies, and clusters of galaxies. Most remarkably, when we look at the simulations that match the observed data the best, we can extract, based on our most advanced understanding, which clumps of structure should equate to a galaxy within our Universe.

When we do exactly that, we get a number that’s not a lower-limit, but rather an estimate for the true number of galaxies contained within our observable Universe. The remarkable answer? As of today, two trillion galaxies should exist within our observable Universe. Yet, that number is so remarkably different from the lower-limit estimate we came up with from the Hubble eXtreme Deep Field image.

Two trillion versus 176 billion means that more than 90% of the galaxies within our Universe are beyond the detection capabilities of even humanity’s greatest observatory, even if we look for nearly a month at a time. Over time, galaxies merged together and grew, but small, faint galaxies still remain today. Even in our own Local Group, we’re still discovering galaxies that contain mere thousands of stars, and the number of galaxies we know of have increased to more than 70.

A simulation of the large-scale structure of the Universe. Identifying which regions are dense and massive enough to correspond to galaxies, including the number of galaxies that exist, is a challenge that cosmologists are only now just rising to. DR. ZARIJA LUKIC

The faintest, smallest, most distant galaxies of all are continuing to go undiscovered, but we know they must be there. For the first time, we can scientifically estimate how many galaxies are out there in the Universe. The next step in the great cosmic puzzle is to find and characterize as many of them as possible, and understand how the Universe grew up.

Two nearby galaxies as seen in the ultraviolet view of the GOODS-South field, one of which is actively forming new stars (blue) and the other which is just a normal galaxy. In the background, distant galaxies can be seen with their stellar populations as well. Even though they’re rarer, there are still late-time galaxies actively forming massive amounts of new stars. NASA, ESA, P. OESCH (UNIVERSITY OF GENEVA), AND M. MONTES (UNIVERSITY OF NEW SOUTH WALES)

Led by the James Webb Space Telescope and the next generation of ground-based observatories, including LSST, GMT, and the ELT, we’re poised to reveal the hitherto unseen Universe as never before.