Loading Posts...

The Most Important X-Ray Image Ever Taken Proved The Existence Of Dark Matter

However, we can use gravitational lensing to learn where the mass is located in this system.

The bending and shearing of light from background galaxies shows it’s separated from the matter’s and X-rays’ location.

Large-field mass reconstruction based on the combined (HST and CFHT) catalogs. On the left-hand side, the mass contours of Abell 520 are overlaid on the smoothed rest-frame luminosity distribution of the cluster. On the right-hand side, the distribution of the high (red) and low (green) velocity groups, corresponding to the multiple mass centers of the cluster. M.J. JEE ET AL. (2012), THE ASTROPHYSICAL JOURNAL, VOLUME 747, NUMBER 2

This separation is some of our strongest evidence for dark matter.

Three colliding galaxy clusters (and one colliding group, at the lower-left), showing the separation between X-rays (pink) and gravitation (blue), indicative of dark matter. On large scales, cold dark matter is necessary, and no alternative or substitute will do. X-RAY: NASA/CXC/UVIC./A.MAHDAVI ET AL. OPTICAL/LENSING: CFHT/UVIC./A. MAHDAVI ET AL. (TOP LEFT); X-RAY: NASA/CXC/UCDAVIS/W.DAWSON ET AL.; OPTICAL: NASA/ STSCI/UCDAVIS/ W.DAWSON ET AL. (TOP RIGHT); ESA/XMM-NEWTON/F. GASTALDELLO (INAF/ IASF, MILANO, ITALY)/CFHTLS (BOTTOM LEFT); X-RAY: NASA, ESA, CXC, M. BRADAC (UNIVERSITY OF CALIFORNIA, SANTA BARBARA), AND S. ALLEN (STANFORD UNIVERSITY) (BOTTOM RIGHT)

Since then, over a dozen additional colliding clusters display such a separation, in a variety of configurations.

The X-ray (pink) and overall matter (blue) maps of various colliding galaxy clusters show a clear separation between normal matter and gravitational effects, some of the strongest evidence for dark matter. Alternative theories now need to be so contrived that they are considered by many to be quite ridiculous. X-RAY: NASA/CXC/ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE, SWITZERLAND/D.HARVEY NASA/CXC/DURHAM UNIV/R.MASSEY; OPTICAL/LENSING MAP: NASA, ESA, D. HARVEY (ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE, SWITZERLAND) AND R. MASSEY (DURHAM UNIVERSITY, UK)

Whatever dark matter is, it cannot be accounted for by the Universe’s normal matter alone.

The Bullet Cluster images were the first to demonstrate this effect.

NASA’s Chandra, which took the image, has been rightfully renewed as NASA’s flagship X-ray observatory after 19 continuous years.

Artist illustration of the Chandra X-ray Observatory. Chandra is the most sensitive X-ray telescope ever built, and has just been extended through at least 2024 as the flagship X-ray observatory in the NASA arsenal. NASA/CXC/NGST TEAM